Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales

نویسندگان

  • Jane K. Willenbring
  • Alexandru T. Codilean
  • Brandon Mcelroy
  • Brandon McElroy
چکیده

We use a new compilation of global denudation estimates from cosmogenic nuclides to calculate the apportionment and the sum of all sediment produced on Earth by extrapolation of a statistically significant correlation between denudation rates and basin slopes to watersheds without denudation rate data. This robust relationship can explain approximately half of the variance in denudation from quartz-bearing topography drained by rivers using only mean slopes as the predictive tool and matches a similar fit for large river basins. At slopes >200 m/km, topography controls denudation rates. Controls on denudation in landscapes where average slopes are 10 mm/k.y. We use global topographic data to show that the vast majority of the Earth’s surface consists of these gently sloping surfaces with modest, but positive, gross denudation rates, and that these areas contribute the most sediment to the oceans. Because of the links between silicate weathering rates and denudation rates, the predominance of low sloping areas on the Earth’s surface compared to areas of steep mountainous topography implies that mountain uplift contributes little to drawdown of CO2 at cosmogenic nuclide time scales of 103–106 yr. The poorly understood environmental controls that set the pace of denudation for the largest portion of Earth’s surface hold the key to understanding the feedbacks between erosion and climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales: REPLY

We thank Warrick et al. (2014) for the Comment on our recent synthesis of 10Be-derived denudation rates (Willenbring et al., 2013), in which we suggested that gently sloping areas, representing ∼90% of the Earth’s land surface, have sufficiently high rates of denudation to produce a majority of mass fluxes to the world’s ocean. First, Warrick et al. take issue with labeling our global cosmogeni...

متن کامل

A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a “lon...

متن کامل

Factors controlling variations in river sediment loads

Sediment transfer from continents to oceans via rivers is one of the important processes regulating river-bank stabilization, soil formation, biogeochemical cycling of elements, crust evolution and many other earth-related processes. Due to changes in continental positions during the geologic past, water flow and sediment loads in rivers have also shown variations during different time periods....

متن کامل

Suspended sediment fluxes at an intertidal flat: The shifting influence of wave, wind, tidal, and freshwater forcing

Using in situ, continuous, high frequency (8–16Hz) measurements of velocity, suspended sediment concentration (SSC), and salinity, we investigate the factors affecting near-bed sediment flux during and after a meteorological event (cold front) on an intertidal flat in central San Francisco Bay. Hydrodynamic forcing occurs over many frequency bands including wind wave, ocean swell, seiching (500...

متن کامل

WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation

Quantifying continental sediment flux is a fundamental goal of earth-system science. Ongoing measurements of riverine-suspended sediment fluxes to the oceans are limited (o10% of rivers) and intrabasin measurements are even scarcer. Numerical models provide a useful bridge to this measurement gap and offer insight to past and future trends in response to human and environmental changes. BQART i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017